对于从事C、C++程序开发的开发人员来说,在内存管理领域,他们既是拥有最高全力的“皇帝”,又是从事最基础工作的劳动人民——既拥有每一个对象的“所有权”,又担负着每一个对象声明从开始到终结的维护责任。

对于Java程序员来说,在虚拟机自动内存管理机制的帮助下,不再需要为每一个new操作去写配对的delete/free代码,不容易出现内存泄露和内存溢出的问题,看起来由虚拟机管理内存一切都很美好。不过,也正是因为Java程序员把控制内存的权利交给了Java虚拟机,一旦出现内存泄露和溢出方面的问题,如果不了解虚拟机是怎样使用内存的,那排查错误、修正问题将会成为一项异常艰难的工作。

1,运行时数据区域

Java虚拟机在执行Java程序的过程中会把它所管理的内存划分为若干个不同的数据区域。这些区域有各自的用途,以及创建和销毁的时间,有的区域随着虚拟机进行的启动而一直存在,有些区域在是依赖用户线程启动和结束而建立和销毁。


1.1,程序计数器

程序计数器是一块较小的内存空间,它可以看作是当前线程所执行的字节码的行号的行号指示器。在Java虚拟机的概念模型里,字节码解释器工作时就是通过改变这个计数器的值来选取下一条需要执行的字节码指令,它是程序控制流的指示器,分支、循环、跳转、异常处理、线程恢复等基础功能都要依赖这个计数器来完成。

由于Java虚拟机的多线程是通过线程轮流切换、分配处理器执行时间的方式来实现的,在任何一个确定的时刻,一个处理器都会执行一条线程中的指令。因此,为了线程切换后能恢复到正确的执行位置,每条线程都需要由一个独立的程序计时器,各条线程之间计数器互不影响,独立存储,我们称这类内存区域为“线程私有”的内存。

如果线程正在执行的是一个Java方法这个计数器记录的是正在执行的虚拟机字节码指定地址;如果正在执行的是本地方法,这个计数器值应该为空,此内存区域是唯一一个不存在OutOfMemoryError情况的区域。

【问题】没有程序计数器会怎么样?

【答案】没有程序计数器,Java程序中的流程控制将无法得到正确的控制,多线程也无法正确的轮换。

1.2,虚拟机栈

与程序计数器一样,Java虚拟机栈也是线程私有的,它的生命周期与线程相同。虚拟机栈描述的是Java方法执行的线程内存模型:每个方法被执行的时候,Java虚拟机都会创建一个栈帧用于存储局部变量表、操作时栈、动态链接、方法出口等信息。每一个方法被调用直至执行完毕的过程,就对应着一个帧栈在虚拟机栈中从入栈到出栈的过程。

经常有人把Java内存区域笼统地划分为堆内存和栈内存,这种划分方式直接继承自传统的C、C++程序的内存布局结构,在Java语言里就显得粗糙了,实际的内存区域划分要比这个更加复杂。其中栈就是指的虚拟机栈或更多数情况下只是指虚拟机栈中局部变量表部分。

局部变量表放了编译期可知的各种Java虚拟机基本数据类型(boolean、byte、char、short、int、float、long、double),对象引用(reference类型,它等同于对象本身,可能是一个指向对象期起始地址的引用指针,也可以是指向一个代表对象的句柄或者其他与此对象相关的位置)和returnAddress类型(指向了一条字节码指令地址)。

这些数据类型在局部变量表中的存储空间以局部变量槽(Slot)来表示,其中64位长度的long和double类型的数据会占用两个变量槽,其中的数据类型只占用一个。局部变量表所需的内存空间在编译器间完成分配,当进入一个方法时,这个方法需要在栈帧中分配多大的局部变量空间是完全确定的,在方法运行期间不会改变局部变量表的大小。这里所说的“大小”是指变量槽的数量,虚拟机真正使用多大的内存空间(1个变量槽占用32个比特、64个比特)来实现一个变量槽,这完全是由虚拟机实现自行解决的事情。

如果线程请求的栈深度大于虚拟机所允许的深度,将抛出StackOverflowError异常;如果Java虚拟机容量可以动态扩展,当栈扩展时无法申请到足够的内存会抛出OutOfMemoryError异常。

1.3,本地方法栈

本地方法栈与虚拟机栈所发挥的作用是非常相似的,其区别只是虚拟机栈为虚拟机执行Java方法服务,而本地方法栈则是为虚拟机使用到的本地方法服务。

本地方法栈中方法使用语言、使用方式与数据结构并没有任何强制规定,因此具体的虚拟机可以根据需要自由实现它,甚至有的Java虚拟机直接就把本地方法栈和虚拟机栈合二为一。与虚拟机栈一样,本地方法栈也会在栈深度溢出或者栈扩展失败时分别抛出StackOverflowError和OutOfMemoryError异常。

1.4,Java堆

Java堆是虚拟机所管理的内存中最大的一块。Java堆是被所有线程共享的一块内存,在虚拟机启动时创建。此内存区域的唯一目的就是存放对象实例,Java世界里“几乎”所有的对象实例都在这里分配内存。

所有的对象实例以及数组“几乎”都应当在堆上分配,因为随着Java语言的发展,现在已经能看到些许迹象表明日后可能出现值类型的支持,即使只考虑现在,由于及时编译技术的进步,尤其是逃逸分析技术的日渐强大、栈上分配、标量替换优化手段已经导致一些微妙的变化悄然发生,所以说Java对象实例都分配在堆上也渐渐变得不是那么绝对了。

Java堆是垃圾收集器管理的内存区域,因此一些资料中它被称为“GC堆”。Java堆可以处于物理上不连续的内存空间中,但在逻辑上应该被视为连续的。

如果从分配内存的角度来看,所有线程共享的Java堆中可以划分出多个线程的私有的分配缓冲区,以提高对象分配时的效率。不过无论如何划分,都不会改变Java堆中存储内容的共性,无论是哪个区域,存储的都只能是对象的实例或数组,将Java堆细分的目的只是为了更好地回收内存,或者更快地分配内存。

Java堆可以被实现成固定大小的,也可以是扩展的。当前主流的Java虚拟机都是按照可扩展实现的(通过参数-Xmx和-Xms设定)。如果在Java堆中没有内存完成实例分配,并且堆无法再扩展时,Java虚拟机将会抛出OutOfMemoryError异常。

Java堆从GC的角度还可以细分为: 新生代(Eden 区、From Survivor 区和 To Survivor 区)和老年代。

(1)新生代:是用来存放新生的对象。一般占据堆的 1/3 空间。由于频繁创建对象,所以新生代会频繁触发MinorGC 进行垃圾回收。新生代又分为Eden区、ServivorFrom、ServivorTo 三个区。

  • Eden区Java 新对象的出生地(如果新创建的对象占用内存很大,则直接分配到老年代)。当 Eden 区内存不够的时候就会触发 MinorGC,对新生代区进行 一次垃圾回收。
  • ServivorFrom:上一次GC的幸存者,作为这一次GC的被扫描者。
  • ServivorTo:保留了一次 MinorGC 过程中的幸存者。

(2)老年代主要存放应用程序中生命周期长的内存对象。老年代的对象比较稳定,所以 MajorGC 不会频繁执行。在进行 MajorGC 前一般都先进行 了一次 MinorGC,使得有新生代的对象晋身入老年代,导致空间不够用时才触发。当无法找到足够大的连续空间分配给新创建的较大对象时也会提前触发一次 MajorGC 进行垃圾回收腾出空间。

(3)永久代:指内存的永久保存区域,主要存放 Class 和 Meta(元数据)的信息,Class在被加载的时候被 放入永久区域,它和和存放实例的区域不同,GC不会在主程序运行期对永久区域进行清理。所以这 也导致了永久代的区域会随着加载的Class的增多而胀满,最终抛出OOM异常。

1.5,方法区

方法区与Java堆一样,是各个线程共享的内存区域,它用于存储已被虚拟机加载的类型信息、常量、静态变量、即时编辑器编译后的代码缓存等数据。(类存放在方法区中)

方法区的约束是非常宽松的,除了和Java堆一样不需要连续的内存和可以选择固定大小或者可扩展外,甚至还可以选择不实现垃圾收集。相对而言,垃圾收集行为在这个区域的确比较少出现的,但并非数据进入了方法区就如永久代一样永久存在了。这个区域的内存回收目标主要针对常量池的回收和对类型的卸载,一般来说这个区域的回收效果比较难令人满意,尤其是类型的卸载,条件相当苛刻,但是这部分区域的回收有时又确实是必要的。

1.6,运行时常量池

运行时常量池是方法区的一部分。Class文件除了有类的版本、字段、方法、接口等描述信息外,还有一项信息是常量表,用于存放编译期生成的各种字面量与符号引用,这部分内容将在类加载后存放到方法区的运行时常量池中。

Java虚拟机对于Class文件每一部分的格式都有严格规定,如每一个字节用于存储哪种数据类型都必须符合规范上的要求才会被虚拟机认可、加载和执行,但对于运行时常量池,并没有任何细节的要求,不同提供商实现的虚拟机可以按照自己的需要来实现这个内存区域,不过一般来说,除了保存Class文件中描述的符号引用外,还会把由符号引用翻译出来的直接引用也存储在运行时常量池中。

运行时常量池相对于Class文件常量池的另外一个重要特征是具备动态性,Java语言并不要求常量一定只有编译期才能产生,也就是说,并非预置入Class文件中常量池的内容才能进入方法区运行时常量,运行期间也可以将新的常量放入池中,这种特性被开发人员利用得比较多的便是String类的intern()方法。

既然运行时常量池是方法区的一部分,自然受到方法区内存的限制,当常量池无法再申请到内存时会抛出OutOfMemoryError异常。

1.7,直接内存

直接内存并不是虚拟机运行时数据区的一部分,但是这部分也被频繁地使用,而且也可能导致OutOfMemoryError异常出现。在Java1.4中新加入了NIO类,引入了一种基于通道与缓冲区的I/O方式,它可以使用Native函数库直接分配堆外内存,然后通过一个存储在Java堆里面的DirectByteBuffer对象作为这块内存的引用进行操作。这样在一些场景中显著提高性能,因为避免了在Java堆和Native堆中来回复制数据。

本机直接内存不会受到Java堆大小的限制,一般服务器管理员配置虚拟机参数时,会根据实际内存去设置-Xmx等参数信息,但经常忽略掉直接内存,使得各个内存区域总和大于物理内存限制,从而导致动态扩展时出现OutOfMemoryError异常。

2,Java堆中的对象

2.1,对象的创建

Java是一门面向对象的编程语言,Java程序运行过程中无时无刻都有对象被创建出来。在语言层面上,创建对象通常仅仅是一个new关键字而已,而在虚拟机中,对象的创建是一个极其复杂的过程:

(1)当Java虚拟机遇到一条字节码new指令时,首先将去检查这个指令的参数是否能在常量池中定位到一个类的符号引用,并且检查这个符号引用代表的类是否已经被加载、解析和初始化过。如果没有,那必须先执行相应的类加载过程。

(2)在类加载检查通过后,接下来虚拟机将为新生对象分配内存。对象所需内存大小在类加载完成后便可确认,为对象分配分配空间的任务实际上便等同于把一块确定大小的内存从Java堆中划分出来。

(3)内存分配完成后,虚拟机必须将分配到的内存空间(但不包括对象头)都初始化为零值,如果使用本地线程分配缓冲区分配,这一项工作可以提前到哦分配时顺便进行。这不操作保证了对象的实例字段在Java代码中可以不赋初始值就直接使用,使程序能访问到这些字段的数据类型所对应的零值。

(4)Java虚拟机对对象进行必要的设置。例如这个对象是哪个类的实例、如何才能找到类的元数据信息、对象的哈希码、对象的GC分代年龄等信息。这些信存放在对象的对象头之中。根据虚拟机当前运行状态的不同,如是否启用偏向锁等,对象头会有不同的设置方式。

(5)从虚拟机角度来看,一个新的对象已经产生了。但是从Java程序角度来看,对象才刚刚开始——构造函数,即Class文件中的()方法还没有执行,所有的字段都默认为零值,对象需要的其他资源和状态信息也还没有按照预定的意图构造好。一般来说(由字节码流中new指令后面是否跟随invokespecial指定所决定,Java编译器会在遇到new关键字的地方同时生成这两条字节码指令,但如果直接通过其他方式产生的则不一定如此),new指令之后会接着执行()方法,按照程序员的意愿对对象进行初始化,这样一个真正可用的对象才算完全被构造出来。

内存分配问题:假设Java堆中内存是绝对规整的,所有被使用过的内存都被放在一边,空闲的内存被放在另一边,中间放着一个指针作为分界点的指示器,那所分配的内存就仅仅是把那个是指针向空闲空间方向挪动一段与对象大小相等的距离,这种分配方式称为“指针碰撞”。

但如果Java堆中的内存并不是规整的,已被使用的内存和空闲的内存相互交错一起,那就没有办法简单地进行指针碰撞了,虚拟机就必须维护一个列表,记录哪些内存块是可用的,在分配的时候从列表中找到一块足够大的空间划分给对象实例,并更新列表上的记录,这种分配方式称为“空闲列表”。

选择那种分配方式由Java堆是否规整决定。因此,当使用Serial、ParNew等带压缩整理过程的收集器时,系统采用的分配算法是指针碰撞,既简单又高效;而当使用CMS这种基于清除算法的收集器时,理论上就只能采用较为复杂的空闲列表来分配内存。

指针移动问题:对象创建在虚拟机中是非常频繁的行为,即使仅仅修改一个指针所指向的位置,在并发情况下也并不是线程安全的,可能出现正在给对象A分配内存,指针还没来得及修改,对象B又同时使用了原来的指针来分配内存。

解决这个问题的有两种方案:

  • 对分配内存空间的动作进行同步处理——实际上虚拟机是采用CAS配上失败重试的方式保证更新原子性
  • 把内存分配的动作按照线程划分在不同的空间之中进行,即每个线程在Java堆中预先分配一小块内存,就在哪个线程的本地缓冲区分配缓冲,哪个线程要分配内存,就在哪个线程的本地缓冲区中分配,只有本地缓冲区用完了,分配新的缓冲区时才需要同步锁定。虚拟机是否使用本地线程分配缓冲区,可以通过-XX:+/-UseTLAB参数来设定。

2.2,对象的内存布局

在HotSpot虚拟机中,对象在堆内存中的存储分局可以划分为三个部分:对象头、示例数据和对齐填充。

HotSpot虚拟机对象的对象头部包括两类信息:

(1)第一类是用来存储对象自身的运行时数据,如哈希码、GC分代年龄、锁状态标志、线程持有的锁、偏向线程ID、偏向时间戳等,这部分数据的长度在32位和64位的虚拟机中分别为32个比特和64个比特。官网称它为“Mark Word”,对象需要存储的运行时数据很多,其实已经超过了32、64位Bitmap结构能记录的最大限度,但对象头里的信息是与对象自身定义的数据无关的额外存储成本,考虑到虚拟机的空间效率,Mark Word被设计成一个有着动态定义的数据结构,以便在极小的空间内存储尽量多的数据,根据对象的状态复用自己的存储空间。

例如32位的HotSpot虚拟机中,如对象未被同步锁锁定的情况下,Mark Word的32个比特存储空间中的25个比特用于存储对象哈希码,4个比特用于存储对象分代年龄,2个比特用于存储锁标志位,1个比特固定为0,在其他状态下对象的存储内容如下:

存储内容标志位状态对象哈希码、对象分代年龄01未锁定指向锁记录的指针00轻量级锁定指向重量级锁的指针10膨胀(重量级锁定)空,不需要记录11GC标志偏向线程ID、偏向时间戳、对象分代年龄01可偏向

(2)对象头的另外一部分是类型指针,即对象指向它的类型元数据指针,Java虚拟机通过这个指针来确定该对象是哪个类的实例。并不是所有虚拟机事先都必须在对象数据上保留类型指针,换句话说,查找对象的元数据并不一定要经过对象本身。

如果对象是一个Java数组,那再对象头中还必须有一块用于记录数组长度的数据,因为虚拟机可以通过普通Java对象的元数据信息确定Java对象的大小,但是如果数组的长度不确定的,将无法通过元数据中的信息推断出数组的大小。

实例部分是对象真正存储的有效信息,即我们在程序代码里面所定义的各种类型的字段内容,无论是从父类继承下来的,还是在子类中定义的字段都必须记录起来。这部分的存储顺序会受到虚拟机分配策略参数和字段在Java源码中定义顺序的影响。

HotSpot虚拟机默认的分配顺序为longs/double、ints、shorts/chars、bytes/booleans、oops,从以上默认的分配策略中可以看到,相同宽度的字段总是被分配到一起存放,在满足这个前提条件的情况下,在父类中定义的变量会出现在子类之前。如果HotSpot虚拟机的+XX:CompactFields参数值为true,那子类之前较窄的变量也允许插入父类变量的空隙之中,以节省出一点点空间。

对象的第三部分是对齐填充,这并不是必然存在的,也没有特殊含义,它仅仅起着占位符的作用。由于HotSpot虚拟机的自动内存管理系统要求对象起始地址必须是8字节的整数倍,换句话说任何对象的大小都必须是8字节的整数倍。对象头部信息已经被精心设计成正好8字节的整数倍,因此,如果对象实例数据没有对齐,就需要通过对齐填充来补全。

2.3,对象的访问定位

创建对象自然是为了后续使用该对象,Java程序会通过栈上的reference数据来操作堆上的具体对象。对象的访问方式也是由虚拟机实现而定的,主流的访问方式主要有使用句柄和直接指针两种方式:

  • 如果使用句柄访问的话:Java堆中将可能会划分出一块内存来作为句柄池,reference中存储的就是对象的句柄地址,而句柄中包含了对象实例数据与类型数据各自具体的地址信息

  • 如果使用直接指针访问的话:Java堆中独享的内存布局就必须考虑如何防止访问类型数据的相关信息,reference中存储的直接就是对象地址,如果只是访问对象本身的话,就不需要多一次间接访问的开销。

这两种对象访问方式各有优势,使用句柄来访问的最大好处就是reference中存储的是稳定的句柄地址,在对象被移动时只会改变句柄中的实例数据指针,而reference本身不需要被修改。

使用直接指针来访问的最大好处就是速度更快,它节省了一次指针定位的开销,由于对象访问在Java中非常频繁,因此这类开销及小成多也是一项极为可观的执行成本。

标签: Java, 虚拟机, 内存, 线程, 创建, 对象, JVM, 分配

相关文章推荐

添加新评论,含*的栏目为必填